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We investigate the evolution of a vertically tilted geostrophic vortex of cylindrical 
shape and circular horizontal cross-section using the recently developed method of 
boundary surface dynamics. The vortex consists of a finite volume of constant potential 
vorticity immersed in a spatially unbounded fluid of uniform density stratification. The 
fully nonlinear three-dimensional problem is then reduced to the calculation of the 
Lagrangian evolution of the boundary surface of the vortex region, thus decreasing the 
dimensionality by one. In the numerical simulations presented here, the vortex shows 
a general tendency to attain vertical alignment and a horizontal axisymmetrical shape 
by wobbling about its centre and going through three basic stages of evolution: (a)  the 
circular horizontal cross-sections of the upper and lower parts of the vortex distort and 
become elongated; (b)  the upper and lower sections then become vertically aligned by 
reducing their horizontal intercentroid distances ; and (c) the distorted horizontal 
cross-sections relax towards axisymmetry, often through the process of filamentation. 
For a given vortex height, if the horizontal scale of the flow is close to the internal 
radius of deformation, or equivalently, the density stratification is not too strong, the 
processes of filamentation and vertical alignment are enhanced. However, for stronger 
stratifications, both filamentation and vertical alignment are found to be greatly 
inhibited. For relatively small initial inclination angles, filamentation only occurs in the 
upper and lower sections of the vortex. Increasing the angle of tilt also increases the 
tendency of the surface to steepen and filament in the middle sections of the vortex. For 
a fixed value of the ratio of horizontal scale of the flow to the deformation radius, taller 
vortices have an increased tendency to align and axisymmetrize than shorter vortices 
of equal inclination angle. 

1. Introduction 
Strong isolated coherent structures play a fundamental role in the evolution of high 

Reynolds number turbulent flows. Numerical experiments of two-dimensional Eulerian 
flows by McWilliams (1984, 1990, and references therein), have shown that coherent 
vortices develop from random distributions of vorticity and eventually dominate the 
dynamics of the flow. The vortices appear spontaneously through relaxation towards 
axisymmetry of an isolated vorticity patch with a dominant sign in the vorticity field. 
Hence a clear understanding of the conditions leading to axisymmetrization is of 
paramount importance in the study of turbulent behaviour. This process has been 
studied in some detail by Melander, McWilliams & Zabusky (1987) who showed that 
in Eulerian and barotropic geostrophic flows, a near elliptical vortex evolves to 
axisymmetry as a result of an inviscid mechanism involving filamentation. In the case 
of two-layer stratified geostrophic flows, simulations of vortex interactions show that 
under certain conditions, vortex patches in different layers coalesce and become aligned 
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in the vertical direction by reducing their intercentroid separation. The new combined 
vortex then relaxes to a horizontal axisymmetrical shape through the processes of 
filamentation (Polvani 1991 ; Polvani, Zabusky & Flier1 1989). 

In a continuously stratified fluid, high-resolution simulations of fully three- 
dimensional geostrophic turbulence by McWilliams (1 989), showed that coherent 
vortices also emerge from random initial conditions where the vorticity is pre- 
dominantly of a single sign. McWilliams provides a qualitative description of the role 
of vertical alignment and axisymmetrization in vortex formation, and clearly indicates 
the importance of these processes in the emergence and further evolution of a 
population of vortices in geostrophic turbulence. Rhines (1977, 1979), referred to these 
processes as the ‘growth of barotropy ’ or ‘ barotropization’ in cases with top and 
bottom boundaries present. In that case, there is a pattern of conversion of potential 
energy to kinetic energy and horizontal distortion of the potential vorticity contours 
that corresponds to the enstrophy cascade. 

However, partly owing to the high costs involved in fully three-dimensional 
computations, the details of the processes of vortex formation in continuously 
stratified fluids are not well known. Viera (1994b) used the recently developed method 
of boundary surface dynamics (hereinafter BSD), to study the axisymmetrization from 
horizontal distortion of an elliptical right cylinder vortex of finite height embedded in 
a spatially unbounded, continuously stratified geostrophic fluid. Preliminary results 
showed that axisymmetrization was enhanced for horizontal scales L greater than the 
internal radius of deformation L, with little or no filamentation, provided the aspect 
ratio of the elliptical cross-section is not too large. If the aspect ratio is large, horizontal 
fragmentation of the vortex occurs, and the outer levels (the top and bottom sections) 
split into two smaller vortices. On the other hand, we found that relaxation towards 
axisymmetry was inhibited for scales L smaller than L,, that is, for relatively strong 
density stratification. In another related study, Viera (1994~) has shown that when two 
identical vertically offset cylindrical vortices interact with one another under certain 
conditions, they tend to align themselves by becoming vertically tilted in the initial 
stages of the evolution. For horizontal scales greater than L,, the horizontal 
intercentroid separation of the top and bottom levels of the new tilted structure 
increased by as much as two or three times the initial vortex radius, depending upon 
the original configuration of the system. Some natural questions arise. Is the long time 
evolution of the resulting tilted structure a stable or unstable configuration? In other 
words, does the structure eventually reach a stable (possibly axisymmetric) shape or 
does it collapse due to vertical and/or horizontal fragmentation? Are there any 
conditions when alignment and axisymmetrization without filamentation are possible 
as in the case of Viera (1994b), or does it always filament in the process? If it does 
filament, what is the extent of filamentation? Does the value of the initial angle of 
inclination affect the rates of alignment and axisymmetrization? 

In an attempt to obtain some insight into the problems posed by these questions, in 
this article we study the evolution of a cylindrical geostrophic vortex of finite height 
that is initially vertically tilted. The aim is to shed some light on the nature of the 
alignment and axisymmetrization processes that occur in a volume of fluid with a single 
sign in the vorticity field, as may appear in simulations of geostrophic turbulence. We 
assume a vortex of constant potential vorticity distribution in the horizontal direction, 
immersed in a spatially unbounded fluid of uniform stratification. We then apply 
the BSD method to reduce the fully nonlinear three-dimensional problem to the 
Lagrangian evolution of the two-dimensional boundary surface of the vortex region, 
thus decreasing the amount of computational effort involved. One of the advantages 
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of a Lagrangian algorithm such a BSD is the ability to capture the distortion of the 
material surfaces in great detail with only a moderate number of computations. 
Another characteristic of BSD is the capacity to describe continuously stratified 
geostrophic flows without the necessary introduction of a layered structure in the 
vertical direction. The governing equations are first transformed into integrals over the 
vortex surface and then discretized directly to compute the velocity field of the flow. An 
immediate consequence of the fully three-dimensional approach is that the singular 
integrals that normally appear in the numerical discretizations are easily desingularized 
using a straightforward change of variables, yielding a simple and robust algorithm. 

The principal aim of the paper is to present preliminary investigations obtained from 
numerical experiments using BSD, to help identify general qualitative conditions that 
may enhance or inhibit the process of evolution towards a vertically aligned 
axisymmetric configuration. The organization of the article is as follows. In $2 we 
introduce the governing equations and give a brief overview of the BSD equations and 
numerical algorithm. In $3 we elaborate on the concepts of vortex alignment and 
axisymmetrization and present simulations for several values of the model parameters 
such as the tilt angle and the stratification strength. Finally, in $4 we give a summary 
and discussion and outline some outstanding problems requiring further investigation. 

2. The BSD algorithm 
The quasi-geostrophic potential vorticity in large-scale rapidly rotating continuously 

stratified flows in the oceans and planetary atmospheres is conserved following fluid 
particles of horizontal velocity (u, v) .  That is, 

aQ aQ aQ - + u - + v -  = 0, 
at ax ay 

where the potential vorticity is 

and where $(x, y ,  z ,  t )  is the stream function such that (u, v )  = (- $y, $,). The strength 
of the stratification is measured by 

where L, is the internal radius of deformation of the fluid, JV is the uniform 
Brunt-Vaisala frequency, f is the spatially uniform Coriolis parameter, p(z) the 
density and L, D are characteristic horizontal and vertical lengthscales respectively. 
The equations are valid when the Rossby number R, = U / f L  4 1, where U is a 
characteristic velocity scale of the flow. This condition is satisfied for large-scale flows 
where rotation is important. See for example Pedlosky (1979) for a derivation and 
conditions of validity of (1)-(3), and Charney (1963), who first discussed the extension 
of the concept of point vortices to a continuously stratified quasi-geostrophic fluid. 

To apply the BSD method we assume a vortex consisting of a finite volume V in a 
spatially unbounded fluid such that the potential vorticity 

{QI(z )  inside V 

Q J z )  outside V, 
Q<x, Y ,  z> = (4) 
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where Q, and Qo are functions of z only, i.e. the potential vorticity field is piecewise- 
constant horizontally, but can have an arbitrary variation in the vertical direction. 
Then it can be shown (Viera 1994a) that the velocity field may be written in the integral 
form 

where S is the closed surface enclosing the volume V, 

is the potential vorticity difference between outside and inside the vortex, and 

is the Green’s function of the Laplace operator on the right-hand side of (2). Since 
potential vorticity is conserved following fluid particles of horizontal velocity (u, v), the 
problem is completely determined by following the evolution of the material boundary 
surface S using the Lagrangian equations 

AQ(z’> = Qdz’) - Q,<z’> (6) 

G(r, r’) = y [ ( ~ - x ’ ) ~ + ( y - y ’ ) ~ + y ~ ( z - z ’ ) ~ ] - ~ ’ ~  (7)  

where the velocity field is evaluated at the surface S.  The three-dimensional problem 
has been reduced to the evolution of the two-dimensional boundary surface of the 
vortex region V. Equations (5)-(8) are the boundary surface dynamic equations 
describing the fully nonlinear three-dimensional evolution of geostrophic vortices in a 
continuously stratified fluid. 

The numerical algorithm is implemented by writing ( 5 )  in the form 

where 

where 

and 

M(”,”)(z’) = fv  G(r, r’) (dx’, dy’), 

V is a closed curve obtained by the intersection of S with a horizontal plane z = zk 
(zB < zk < zT), and zB  and zT. are the bottom and top levels of the vortex respectively. 
(The word level is used in this context simply as a convenient way to specify a hori- 
zontal cross-section of the vortex at a given value of z in the spatial discretizations. It 
has no relation to the so-called level-models used elsewhere in the literature.) The super- 
scripts (u, v) refer to the (x’, y’)-integrals of the (u, v)-components of the velocity 
field respectively. The surface S is discretized by a set of points (xzk,yik,  zk)  such that 
0 < i < N +  1 and 1 d k < N,, where N, is the number of z-levels, N + 2  the number 
of points on each level and zB = z1 and zT = zN,. 

Using the trapezoidal rule gives 
N 

M‘”’(zJ = a(x,, - xNJ Mo, + f Z (xj+lL -Xj- l J  Mjl, ( 1 0 4  

M‘”’(zl) = iblE -YN1) M O l  +a bj+ll-yj-lL) (lob) 

j=1 

N 

j=1 
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To close the contour we have taken (xOk,yok) = ( x ~ + ~ ~ ,  y N + J  in (lOa,b). Next, using 
Simpson's rule quadrature in the z-direction with N ,  odd, the velocity field becomes 

N,-1 N,-2 

+ 4 c M(UgV)(~l )  AQ(z,) + 2 c M ( U ~ V ) ( ~ l )  AQ(zl)] + Zltr")). (12) 
1=2 

1 even 
1=3 1 I 

1 odd 

The expressions I$,") are singular integrals over a small surface patch containing the 
singular point (xik, yik,  zk )  (see Viera 1994a for details of desingularization and 
computation of the integrals Zik). The time stepping is performed using a standard 
fourth-order Runge-Kutta method. To maintain an adequate resolution for longer 
integration times and increase computational efficiency, a node insertion/deletion 
scheme is included in each level. A node is inserted between two consecutive points if 
their distance di > c where 

c = max[min(0.1K-1,Smax),0.021], S,,, = min[0.03P,0.15], 

K is the local contour curvature, and P the perimeter of the contour. A node is deleted 
if di < max [0.02,0.14. These parameters were obtained by numerical experimentation 
and found suitable for the present application. 

3. Numerical simulations 
The initial condition consists of a tilted cylindrical vortex of circular horizontal 

cross-section of unit radius, with a horizontal intercentroid distance Di between the 
bottom and top levels zB  and zT ,  as shown in figure 1 at t = 0. The vortex height is V, 
and we set zB = - V,, zT = 0 and the vortex centre at the point (x ,  y ,  z )  = ( O , O ,  -kV,). 
Although BSD does not require a constant potential vorticity distribution in the 
vertical, in order to keep the number of free parameters to a minimum, a constant 
potential vorticity is assumed in the vertical direction also. We note from ( 5 )  and (8) 
that if AQ is independent of z ,  then IAQI can be absorbed into the timescale. Hence, 
without loss of generality, we set Q, = 1 and Q, = 0, giving AQ = - 1. Thus, we are 
left with two independent parameters in the system. One is the angle of tilt Oi, where 
tan 8, = Di/ V,. Another convenient parameter in the present simulations is y /  V,, what 
might be termed an 'effective' stratification strength. It takes into account the effects 
of stratification changes, directly from changes in the Brunt-Vaisala frequency .N and 
indirectly from changes in the vortex height. This can be easily seen from the definition 
of y in (3), where we note that increasing (decreasing) the vertical lengthscale D is 
equivalent to decreasing (increasing) N, for a fixed value of y. In other words, tall 
vortices in a strongly stratified fluid have a similar behaviour to shorter vortices in a 
weaker stratified environment. In all simulations we take N ,  = 29 and a time step 
At = 0.4, except in Run 5 ,  where a higher resolution of N ,  = 61 is used. The initial 
number of nodes on each horizontal level is N = 70 and this number is allowed to 
increase to a maximum of about 350 points depending on the complexity of the flow. 
Since potential vorticity is conserved, the vortex volume remains constant throughout 
the evolution. This fact was used to check the accuracy of the calculations and it was 
found that although the vortex experienced large deformations in some cases, the 
volume change remained less than 0.5 % at the end of each run. 

Since the advecting velocity in the quasi-geostrophic equation (1) involves only the 
horizontal part of the velocity field, the fluid particles comprising the boundary of a 
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FIGURE 1. Three-dimensional view of the vortex evolution for D,/ V, = 2, y /  V, = 1 ,  N,  = 29 and 
Az = 0.0357 (Run 1): (a) t = 0, (b) t = 20, (c) t = 40, ( d )  t = 60. 

Run D, v, Y D,l K Y/ K Nz Figures 

1 2 1 1 2 1 29 1-5 
2 4 1 1 4 1 29 6 1 0  
3 1 0.5 1 2 2 29 11-14 
4 2 1 3 2 3 29 15-18 
5 4 2 1 2 0.5 61 19-24 

TABLE 1. The parameters used in the five simulations and their corresponding figure numbers. There 
are only two independent parameters in the system, and we have chosen the tilt angle, given by 
tan Oi = D,/ K, and an ‘effective’ stratification strength given by y /  5. 

given horizontal cross-section will remain at the same vertical level throughout the 
evolution. Hence, for the purpose of discussing the results of the simulations in the 
present context, it will be convenient to refer to the vortex evolution as consisting of 
the following two main components, as discussed by McWilliams (1989): (a)  vertical 
alignment of the different sections of the vortex, defined as the extent to which the 
vortex axis (i.e. the line joining the centroids of all the horizontal cross-sections) 
becomes close to a vertical straight line; (b) horizontal axisyrnrnetrization, which is the 
extent to which the boundaries of a horizontal cross-section at a given level reach a 
circular shape. The latter appears in a two-dimensional fluid, as we mentioned in Q 1, 
and can be interpreted in terms of fluid trajectories of the conserved potential vorticity. 
The former, on the other hand, requires the third dimension and has more 
fundamentally the character of action-at-a-distance since information is conveyed 
vertically only through the Green’s function relating potential vorticity to the motion. 
Our aim here will be to determine to what degree these two conditions are satisfied at 
the end of the evolution. 

We ran a total of five simulations whose parameter values are shown in table 1. In 
the first simulation (Run 1) we let y = 1 ,  = 1 and Di = 2. These values correspond 
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FIGURE 2. The evolution of the vortex axis, defined as the line joining the centroids of all the 
horizontal cross-sections, for Di/ V, = 2 (Run 1). 

FIGURE 3. Trajectories of the centroids of the bottom and top levels 1 and 29, 
respectively, for DJV,  = 2 (Run 1). 

to an inclination angle with the vertical of Bi = arctan2 FZ 63" and a stratification 
strength y / V ,  = 1. We take N ,  = 29 and hence Az = 0.0357. Since the vortex is 
symmetric about its centre, we anticipate that its evolution will also be symmetrical 
about the centre. In particular, the centre itself will remain fixed throughout the 
evolution. However, we point out that owing to a slight asymmetry introduced by the 
numerical discretizations, the evolution will have a slight departure from perfect 
symmetry. Figure 1 shows the three-dimensional view of the vortex evolution at times 
t = 0, 20, 40 and 60, with the variable range in the horizontal plane being -3 < x,  
y < 3. One important feature of the evolution is the clear tendency of the vortex to 
wobble about its fixed centre while decreasing the inclination angle with the vertical in 
the process. This is confirmed by the plot of figure 2, which shows the three- 
dimensional trajectory of the cylinder axis (recall that the axis is the line joining the 
centroids of all the horizontal levels). It is clear that the middle sections of the vortex 
remain relatively fixed while the structure wobbles about its centre. The extent of the 
wobbling motion is seen in figure 3 where we plot the trajectories of the centroids of 
the bottom and top levels, 1 and 29 respectively. Their intercentroid distance decreases 
as the trajectories spiral inwards, showing the tendency of the levels to increase their 
vertical alignment. 
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FIGURE 4. The evolution of the horizontal cross-sections of the vortex for D J V ,  = 2 (Run 1). The 
number on the left-hand frames indicate the level k and time is shown from left to right. The vertical 
position of a level k is z = Az(k-N,) .  

Another characteristic of the evolution of figure 1 is the large horizontal distortion 
of the structure observed at t = 20, followed by the formation of long filaments in the 
upper and lower sections at t = 40 and 60. In order to capture the details of the 
evolution of the horizontal cross-sections, eight selected levels are plotted in figure 4. 
Levels 1 ,  5, 8 and 10 correspond to the lower section while levels 15, 20, 25 and 29 
correspond to the upper section. The level number k is shown in the top corner of the 
left-hand frames and time is given from left to right. The vertical position of a given 
level k can be found by calculating z = Az(k-N,).  The variable range of each frame 
is the same as that for figure 1 (- 3 < x, y < 3). Since the evolution is symmetric about 
the vortex centre, the shape of level 29, for example, can be obtained by rotating level 1 
through an angle n: about the vertical line passing through the vortex centre. At t = 20, 
the shapes have become elongated and nonlinear steepening begins to appear at the 
boundaries of the outer levels 1, 5 and 25, 29. The wave disturbance in levels 1 and 29 
is about to break, with breaking being defined here as the onset of filamentation. The 
inner levels 8 to 20 have an elongated oval shape and (with the exception of level 8) 
show no sign of steepening. At t = 40 the disturbance of the outer levels finally breaks 
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FIGURE 5. The intercentroid distance as a function of time, between the levels indicated by the 
numbers on the curves, for DJ V,  = 2 (Run 1). 

with the formation of a filament, and the horizontal boundaries show a tendency to 
return to an axisymmetrical shape. Levels 8 to 20 now have a more rounded oval shape 
and although level 8 showed a slight tendency to steepen at t = 20, the extent was not 
sufficiently large to allow breaking and subsequent filamentation to occur. The last 
column gives the evolution at t = 60. All levels attain a remarkably high degree of 
axisymmetry, despite the large distortion experienced in the initial stages. The inner 
levels 8, 10, 15 and 20 return to an almost circular shape without filamentation, while 
the outer levels retain a long thin filamentary tail attached to them. Levels 1 and 29 
show the initial stages of what appears to be the formation of a secondary filament near 
where the original (primary) filament is about to detach. 

It is clear that the horizontal distortion of the top and bottom sections of the vortex 
increases up to a point where the surface steepens, breaks and filaments. As we move 
away from the vortex centre towards the top or bottom levels, the filaments become 
longer and wider as is clearly seen in figure 1 at t = 40 and 60. In this case (Di = 2), 
the first levels away from the centre to break and filaments are z ,  = -0.79 and 
zz3 x - 0.21. That is, the vertical distance from the centre where filamentation first occurs 
is D, z 0.29. Levels further away than D, on both sides of the centre return to 
axisymmetry through filamentation while those closer than D, attain a nearly circular 
shape without sufficient steepening for filamentation to occur. Experiments run with 
smaller values of Di (not shown here because of the similar qualitative behaviour), 
indicate that the distance D, increases with decreasing Dt until filamentation is entirely 
absent from the vortex surface. This is not unexpected, since the vortex axis becomes 
almost vertical for small Dt, and therefore distortion and steepening of the surface are 
reduced, with consequent suppression of the filamentation process. 

We now turn to the question of vertical alignment of the different sections of the 
vortex, as opposed to the axisymmetrization of the horizontal cross-sections. In order 
to obtain a quantitative measure of the degree of alignment, in figure 5 we plot the 
horizontal intercentroid distances dc(l, 29), dc(5, 25) and dc(lO, 15) as a function of time 
(the notation dc(k,, k,) is used to denote the horizontal intercentroid separation 
between levels k, and k,). One point is worth mentioning here. In the ideal case of a 
cylinder attaining the vertical position without distortion of the axis in the process, the 
curves would not cross one another and should intersect the time-axis simultaneously 
at a single point. Therefore, the behaviour of the intercentroid distance curves gives a 
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FIGURE 6. The vortex evolution for DJK = 4 and y / K  = 1 (Run 2): 
(a) t = 0, (b)  t = 20, (c) t = 40, ( d )  t = 60. 

qualitative indication of the extent of distortion of the vortex axis throughout the 
evolution. For example, the curve dc(l, 29) decreases from the initial value D, = 2, to 
a value Df z 1 at t = 60 after passing through a local minimum at about t = 40. The 
curve appears to behave in an oscillatory manner, twice intersecting the curve dc(5,25) 
which decreases in a monotonic fashion. The curve dc(lO, 15) also increases mono- 
tonically up to t = 30 and then remains almost constant thereafter. This indicates 
that the vortex axis experiences considerable distortion while attaining the upright 
position. This behaviour has also been observed in figure 2, where the cylinder axis is 
clearly curved in the upper and lower sections near the end of the evolution, compared 
to the straight line shape at t = 0. The fractional change of dc(l, 29) at the end of the 
run is 

indicating that despite the fact that the curve is increasing at t = 60, the outer levels 
have achieved a relatively large degree of vertical alignment. The curve dc( 1,29) has 
negative concavity near the end of the run and shows a tendency to reach a maximum 
value soon after t = 60. However, simulations with extended time intervals would be 
required to determine its exact behaviour after that point. 

Figure 6 shows the evolution for D, = 4 (Run 2), with all other parameters as for 
figure 1. This corresponds to an angle of tilt Oi = arctan4 z 76". An immediate 
consequence of the larger vertical tilting is the increased vertical distortion of the vortex 
in the earlier stages of evolution. The horizontal cross-sections given in figure 7 show 
the internal levels 8 to 20 with a more elongated shape at t = 20 and 40 compared to 
the corresponding shapes in figure 4 for D, = 2. All levels now filament at t = 60. In 
particular, the middle level zI5 = - i, whose shape is symmetric about the vortex centre, 
becomes quite elongated at t = 40 and breaks with the formation of two filaments at 
t = 60. All other levels near the centre have two filaments while those near the top and 
bottom sections finish up with only one long and relatively wide filament similar to 
those in figure 1 for D, = 2. Hence, increasing the tilting angle has the effect of 
increasing the nonlinear steepening in the middle section of the vortex surface, with 

AD = (0, - Df) /Di  z 50 %, 
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FIGURE 7. Evolution of the horizontal cross-sections for DJV,  = 4 (Run 2) .  
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FIGURE 8. Evolution of the vortex axis for D J V ,  = 4 (Run 2). 
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FIGURE 9. Trajectories of the centroids of levels 1 and 29 for D J V ,  = 4 (Run 2). 
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FIGURE 10. The intercentroid distances for D J V ,  = 4 (Run 2).  

consequent breaking and filamentation occurring in all levels of the structure. The 
curved shape of the axis at the end of the evolution in figure 8 indicates that the vortex 
undergoes a large amount of vertical distortion while attaining the upright position. 

Another effect of a larger angle of tilt is an increase in the extent of wobbling motion 
of the vortex. This is shown by the open shape of the trajectories of the centroids of 
levels 1 and 29, plotted in figure 9. However, although the curves do not spiral inwards 
in this case, the final position of the centroids leads to an intercentroid separation of 
almost the same value as the case D, = 2. This is confirmed by the plots of the 
intercentroid distances in figure 10. They show the alignment curve dc(l, 29) decreasing 
from the initial value Di = 4 to a final value D, z 1, which gives a fractional decrease 
at the end of the run of AD z 75 %. This shows that alignment is larger at t = 60 than 
in the previous case. However, owing to the oscillatory nature of the curves, a more 
appropriate comparison of the extent of alignment in the early stages of the evolution 
is given by the average rates of decrease from t = 0 to the point where the first 
minimum occurs. They are given approximately by 1.5/40 z 0.04 and 3.5/50 z 0.07 
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FIGURE 11. The vortex evolution at (a) t = 0, and (b) 60 for D,/ V, = 2 and 
y/V, = 2 ( y  = 1 and V,  = 0.5). (Run 3). 

FIGURE 12. Evolution of the horizontal cross-sections for y/VH = 2 (Run 3). 

for the curves d,( 1,29) in figures 5 and 10, respectively, and indicate that there is in fact 
an overall increase in the rate of alignment of the top and bottom levels 1 and 29 when 
the tilt angle is increased. 

In the next set of simulations (Runs 3,4  and 5) ,  we return to a value of the tilt angle 



42 

5 ,  25- - 
+ c 
W 

2 0.25 - - 
c 
2 

10, 15 H 

F. Viera 

I 

0 3 
-3 

-3 

FIGURE 13. Trajectories of the centroids of levels 1 (dashed curve) and 
29 (full curve) for y /V,  = 2 (Run 3). 
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FIGURE 14. The intercentroid distances for y /  V, = 2 (Run 3). 

of tan Bi = Di/ V, = 2 and study the effects of varying the stratification strength y /  V,. 
This is done in two different ways. In Runs 3 and 5 we change the vortex height V ,  and 
fix y = 1 and in Run 4 we set V, = 1 and increase y. The main reason for taking this 
approach is numerical convenience. It was found that, in the present simulations, small 
values of y tend to produce a high-wavenumber instability in the filamentary bands 
near the end of the evolution. Although the main vortex core was unaffected, we found 
that using a value of y = 1 and increasing V, eliminates this problem and provides an 
alternative way to adjust the stratification strength. Figure 11 shows the evolution at 
t = 0, 60, for y / V ,  = 2 (Run 3 ) .  Here, the stratification is increased by decreasing the 
vortex height to V ,  = 0.5 and keeping y = 1. The main effect of a stronger stratification 
is to slow down the evolution and consequently decrease the length of the filaments 
ejected and the extent of vertical alignment. The evolution of the horizontal levels is 
shown in figure 12. Although the boundaries of the outer levels 1, 5 and 25,29 steepen 
at t = 20, they have a more rounded, less elongated shape than the corresponding levels 
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FIGURE 15. Evolution of the horizontal cross-sections for D J V ,  = 2 and y / V ,  = 3 (Run 4). 

for y / V ,  = 1 in figure 4. At t = 40 the outer levels filament while the inner levels 8 to 
20 attain a slightly elongated oval shape. At t = 60 all levels return to an almost 
axisymmetrical shape, the inner levels doing so without filamenting in the process. The 
distances travelled by the centroids of the top and bottom levels 1 and 29 are shown 
in the plots of figure 13. The shorter path described in this case results in a relatively 
small reduction of the intercentroid separation between the two levels, as can be seen 
more clearly in figure 14. The curve dc(l, 29) decreases to Of z 0.6, giving a fractional 
decrease of AD z 40% at t = 60. The curves dc(5, 25) and dc(lO, 15) decrease very 
slowly with the former exhibiting an oscillatory decay. 

In the next simulation (Run 4), we increase the stratification even further to y /  & = 3 
by taking y = 3 and a vortex height V ,  = 1 .  Figure 15 shows the evolution of the 
horizontal cross-sections. The extent of distortion has been further reduced compared 
to the previous run with y /  V,  = 2, and filamentation has not occurred at the end of the 
simulation. All levels show a slight tendency to elongate, but it is only at t = 60 that 
levels 1 and 29 show a more pronounced steepening of the boundary. The three- 
dimensional plots in figure 16 clearly indicate that only the four outer levels 1, 2 and 
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FIGURE 16. The vortex evolution at (a) t = 0 and (b) 60 for y / V ,  = 3 (Run 4). 

FIGURE 17. Trajectories of the centroids of levels 1 and 29 for y / V ,  = 3 (Run 4). 
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FIGURE 18. The intercentroid distances for y / V ,  = 3 (Run 4). 

28, 29 show signs of steepening at t = 60. The inner levels 5 and 25 retain a rounded 
oval shape up to the end of the run. The extent of wobbling has also been reduced as 
shown by the trajectories of the centroids of levels 1 and 29 in figure 17. The paths are 
nearly circular arcs of short length and do not spiral inwards as do the trajectories in 
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FIGURE 19. The vortex evolution for Di /V ,  = 2 and y / V ,  = 0.5. Here N,  = 61 and Az = 0.0333 
(Run 5): (a)  t = 0, (b)  t = 20, (c) t = 40, ( d )  t = 60. 
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FIGURE 20. Evolution of the vortex axis for y / V ,  = 0.5 (Run 5).  

figures 3 and 13. This means that alignment of the outer levels has been considerably 
suppressed, as confirmed by the intercentroid distance plots in figure 18. All curves 
have an almost constant slow rate of decay, with d,(lO, 15) remaining virtually constant 
throughout the evolution. The fractional decrease of the alignment curve dc(l ,  29) is 
only AD z 10% at t = 60. 

In the last simulation (Run 5), we decrease the effective stratification strength to 
y /  V ,  = 0.5 by increasing the vortex height to V, = 2 and letting y = 1.  We set D, = 4 and 
hence the angle of tilt is unchanged with tanOi = 2. The number of vertical points is 
increased to N ,  = 61 to maintain an adequate resolution. The three-dimensional plots 
in figure 19 show that the main effect of the weaker stratification is to accelerate the 
evolution and thereby increase the extent of filamentation in the top and bottom parts 
of the vortex. This, in turn, increases the tendency of vertical alignment and horizontal 
axisymmetrization. There is a visible vertical distortion of the vortex at t = 40 and it 
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FIGURE 21. Evolution of the horizontal cross-sections for y /  V,  = 0.5 (Run 5). 

becomes more pronounced at t = 60. The evolution of the vortex axis in figure 20 
clearly shows the extent of vertical distortion experienced by the vortex at the end of 
the run. 

The evolution of the horizontal cross-sections is shown in figure 21. Note, in 
particular, the elongated shape of the boundaries at t = 20, which resemble the 
elongated shapes at t = 20 of the case D i / &  = 4 of figure 6. At t = 40 however, the 
centre level 31 returns to a more rounded configuration compared to the highly 
distorted shape of the corresponding middle level 15 of figure 7. Finally, at t = 60 all 
levels reach a high degree of axisymmetry and in particular level 31 becomes almost 
circular without filamentation. The outer levels 1-9 and 5&61 have long and wide 
filamentary tails which are about to detach from the vortex core. The bottom and top 
levels 1 and 61 show further steepening of the boundary which may conceivably lead to 
further breaking and filamentation. The paths of the centroids of the top and bottom 
levels 1 and 61 (figure 22), have the shape of long arcs of low curvature, except near 
the end of the run where there is a sudden change of curvature. The relatively small 
distance between the end points of the paths shows the large tendency towards vertical 
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FIGURE 22. Trajectories of the centroids of levels 1 and 61 for y / V ,  = 0.5 (Run 5). 
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FIGURE 23. The intercentroid distances for y / V ,  = 0.5 (Run 5). 

alignment. The intercentroid distances in figure 23 confirm the large degree of 
alignment. The curve dc( l ,  61) decays to a value Df  M 1.4 from the initial value Di = 
4, giving a fractional decrease of AD M 65 % at t = 60. This should be compared with 
the value AD M 50% obtained in Run 1 .  The curves d,(9,50) and dc(15, 31) also 
decrease quite considerably, with the former reaching a fractional decrease AD M 68 YO 
at the end of the evolution. 

We now give a quantitative measure of the amount of potential vorticity and 
enstrophy of the vortex in Run 5 that moves from the circularizing core into the 
filaments. In figure 24 we plot the fractional area of the detaching filaments in the lower 
half of the vortex, as a function of z. The fractional area is calculated as A,/A,,  where 
A ,  is the filament area and A ,  is the total area of the horizontal cross-section at the 
given value of z. The bottom level at z = - 2 transfers 30 YO of its area to filamentation. 
The filament area decays to zero within a distance of about 0.6 (at z z - 1.4), which 
corresponds to about 30 YO of the total vortex height. We note that the area under the 
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FIGURE 24. The fractional area of the detached filaments of the vortex of Run 5, as a function of z. 
The curve represents the area of the filaments at t = 60 in figure 21, expressed as a fraction of the total 
cross-sectional area of the vortex as a given value of z .  Only the area corresponding to the lower half 
of the vortex is shown. The area under the curve multiplied by 2 gives the total fractional volume of 
vortical fluid lost to filamentation. 

curve in figure 24 (i.e. the integral with respect to z from -2 to - 1.4), gives the 
fractional volume lost to filamentation in the lower half. Multiplying by 2 to include 
the volume lost in the upper-half as well gives a total volume lost of A V' z 0.18. Hence, 
18 % of the total vortex volume of 27c is lost effectively irreversibly by filamentation. 
Since the potential vorticity is uniform, both horizontally and vertically, the potential 
enstrophy V,  defined as the volume average of $Q2, is proportional to the volume lost. 
Therefore the curve in figure 24 also gives the variation of the potential enstrophy with 
z and a measure of the total amount that moves away from the vortex core due to the 
filamentation process. 

4. Summary and discussion 
We have analysed the evolution of a vertically tilted geostrophic vortex using the 

Lagrangian method of boundary surface dynamics. We used a simple cylindrical vortex 
of circular horizontal cross-section, consisting of a finite volume of constant potential 
vorticity embedded in a spatially unbounded continuously stratified fluid of uniform 
Brunt-Vaisala profile. The numerical experiments show that the vortex wobbles about 
its centre and its boundary surface steepens and filaments in order to achieve a 
vertically aligned axisymmetrical configuration. As discussed by McWilliams (1989), 
we found it convenient to make a distinction between two separate stages of the 
evolution. First, the initially circular horizontal cross-sections distort and elongate to 
allow vertical alignment of the centroids of the different sections to occur. Secondly, 
the distorted horizontal sections axisymmetrize, often but not always, through the 
process of filamentation. It is the combination of these processes that eventually leads 
to the final vertically aligned axisymmetrical shape. Depending on the parameter 
values of the model, the vortex achieves various degrees of vertical alignment and 
horizontal axisymmetry within the time interval used in the present simulations, but 
never reaches a perfect upright position with circular horizontal cross-sections. 
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However, we have been able to identify general conditions that enhance or suppress the 
two process in a volume of fluid with a single sign in the vorticity field as is relevant 
to the study of turbulent flows. 

We have also been able to partially answer some of the questions raised in $1 
regarding the interaction of two vertically offset vortices. For example, the tilted vortex 
appeared to be stable and align under most conditions, at least for the parameter values 
used in the present simulations. In particular, the simulations also show that increasing 
the tilt angle up to a certain extent has the effect of increasing the rate of vertical 
alignment of the top and bottom sections, at least in the early stages of the evolution. 
For instance, the rate of decay, from t = 0 to the first minimum, of the intercentroid 
distance curve dc(l,29) in figure 10 (Run 2), is almost twice as large as for the same 
curve in figure 5 (Run 1). What happens when the tilt angle is increased even further 
remains an open question to be answered through more numerical experimentation. It 
was also found that for relatively small inclination angles, only the sections near the top 
and bottom levels of the vortex break and filament. However, increasing the tilting 
angle has the effect of increasing the horizontal distortion and steepening on all 
sections of the vortex surface. This leads not only to an increase in the length and width 
of the filaments ejected in the upper and lower sections, but also to steepening and 
breaking with consequent filamentation in the middle levels of the structure. This is 
clearly seen by comparing figures 1 and 6 at t = 60. 

We also ran simulations for varying stratification strength y /  V, and found that, for 
a fixed vortex height, if the horizontal scale of the flow is less than the internal radius 
of deformation L,, the degree of vertical alignment, filamentation, and axisym- 
metrization is greatly inhibited. Studies of the evolution of a right elliptical cylinder 
vortex by Viera (19943) showed a similar behaviour in which axisymmetrization and 
filamentation were both suppressed when L was less than L,. This dependence of the 
numerical experiments on the deformation radius is consistent with the usual 
relationship of the ratio of potential energy (PE) to kinetic energy (ICE). That is, 
accelerated alignment and axisymmetrization (barotropization) occurs with greater 
PE/KE ratio, or equivalently, with greater horizontal scale relative to the deformation 
radius. 

We also calculated the potential vorticity and enstrophy that is lost irreversibly from 
the circularizing core to the filaments of the vortex in Run 5. Since in this case the 
filaments have a larger area compared with the filaments found at the end of the other 
simulations (cf. figures 4, 7, 12 and 15), it provides an upper bound for the amount of 
potential vorticity that is lost for all the evolutions presented here. The filament area 
decays rapidly with z as we approach the vortex centre, and is confined to the top 30 O h  

and bottom 30% of the vortex surface. We should point out that the presence of 
horizontal boundaries may affect the potential vorticity lost to filamentation near the 
top and bottom sections of the vortex. In fact, recent preliminary simulations with one 
horizontal boundary present (not yet published) seem to indicate that horizontal 
axisymmetrization is enhanced near the boundary and at the same time the amount of 
filamentation is reduced. More numerical experiments are required to confirm these 
findings. 

In order to minimize the number of parameters involved, we have assumed a simple 
vortex of constant potential vorticity distribution. In the real oceans and atmosphere, 
however, the potential vorticity varies in both the horizontal and vertical directions. 
Simulations with more realistic variations than those used here would be desirable, 
to model actual physical situations more accurately. While arbitrary variations of 
potential vorticity in the vertical direction are relatively simple to implement using 
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BSD (see (4)), variations in the horizontal direction would require a formulation 
involving a multi-surface piecewise-constant distribution to approximate a continuous 
potential vorticity distribution. This is not difficult to implement, but would increase 
the computational time required for each simulation quite considerably. Finally, we 
would like to emphasize that the vortex considered here consisted of a simple cylinder 
of linear axis and circular horizontal cross-section at t = 0. For the purpose of 
understanding in more detail the process of emergence of coherent vortices from 
random initial distributions of potential vorticity, it would be highly relevant to study 
the simultaneous effects of (a)  vertical tilting, (b) initially distorted (perhaps near 
elliptical) horizontal cross-sections and (c) a vortex axis that initially departs from the 
linear shape. These generalizations would increase the number of model parameters 
available. More numerical experiments would therefore be necessary to fully 
understand the nature of the alignment and axisymmetrization processes in a 
continuously stratified, quasi-geostrophic fluid. 

I would like to thank two anonymous reviewers, whose comments and positive 
criticisms greatly helped to improve the presentation of this paper. 
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